Just a proposition, I don't know if it is possible, so I need your advices
_mm256_xor_si256 | Compute the bitwise XOR of the 256-bit integer value of a and b. |
char szString1[32] ;
_mm256_xor_si256(
szString1,
szString1) ;
That would fill a 32 bytes string with 0.
(https://forum.pellesc.de/)
__m256i a = _mm256_loadu_si256((__m256i*) _szTmp1);
__m256i b = _mm256_loadu_si256((__m256i*) _szTmp1);
_mm256_xor_si256(a,b) ;
The compiler does not generate code for __mm_xor_si256 but it does for loading the two addresses
The goo syntax for storing 32 Zeroes in a string is:
__m256i a = _mm256_loadu_si256((__m256i*) _szTmp1) ;
__m256i b = _mm256_loadu_si256((__m256i*) _szTmp1) ;
__m256i c = _mm256_xor_si256(a,b) ;
__mm256_storeu_si256((__m256i*) _szTmp1,c) ;
Verified under Pelle's C Compiler with pope
0x0000ED51 vmovdqu ymm0,ymmword ptr [rsp+188] C5 FE 6F 84 24 88 01 00 00
0x0000ED5A vmovdqu ymm1,ymmword ptr [rsp+188] C5 FE 6F 8C 24 88 01 00 00
0x0000ED63 vpxor ymm0,ymm0,ymm1 C5 FD EF C1
0x0000ED67 vmovdqu ymmword ptr [rsp+188],ymm0 C5 FE 7F 84 24 88 01 00 00
Helped with this link: https://jcma.me/blog/2017/01/23/accelerate-c-code-with-avx2-instructions (https://jcma.me/blog/2017/01/23/accelerate-c-code-with-avx2-instructions)
/arch option (POCC) [9.00] :
QuoteSyntax:
/arch:{SSE2 | AVX | AVX2}
QuoteDescription:
The /arch option selects the processor architecture (for X64).
Architecture Description Default
SSE2 Enable use of Streaming SIMD Extensions 2 instructions. Yes
AVX Enable use of Advanced Vector Extensions instructions. No
AVX2 Enable use of Advanced Vector Extensions 2 instructions. No
Hi Vortex
In the project file I select the SSE2 for the code generation
Could it be possible to compute the mean of RGB values with these instruction; I am searching.
I think that first I must have A0R0G0B int this order for the number and after it is possible to add them.
It's an idea, maybe I dream
Thank you for your comments